$T\bar{T}$ and holography

Wei Song

Tsinghua University

Luis Apolo and WS, 1806.10127, 1907.03745, 2111.02243 Luis Apolo, Stephane Detournay and WS, 1911.12359 Luis Apolo, Penxiang Hao, Wenxin Lai and WS, WIP

BIMSA, June 16, 2022

Quantum gravity in the real world?

- The $T\bar{T}$ deformation
- Holographic dualities: the double trace version
- Holographic dualities: the single trace version
- Other solvable irrelevant deformations

(double-trace) $T\bar{T}$ deformations on the cylinder

[Zamolodchikov;Smirnov, Zamolodchikov; Cavaglia, Negro, Szecsenyi, Tateo; Cardy; Dubovsky, Flauger, Gorbenko; Dubovsky, Gorbenko, Mirbabayi; Conti, Iannella, Negro, Tateo; Frolov; ...]

$$\frac{\partial S_{\mu}}{\partial \mu} = \int dx^2 \det T^{\mu}{}_{\nu} = \int dx^2 \left(T_{xx} T_{\bar{x}\bar{x}} - T_{x\bar{x}} T_{\bar{x}x} \right)$$
$$x = \phi + t, \ \bar{x} = \phi - t, \ \phi \sim \phi + 2\pi R$$

 $T_{\mu
u}$: stress tensor of the deformed theory at μ

- solvable irrelevant deformation
- spectrum on a cylinder with $(x, \bar{x}) \sim (x + 2\pi R, \bar{x} + 2\pi R)$

$$E(\mu) = -\frac{R}{2\mu} \left(1 - \sqrt{1 + \frac{4\mu E}{R} + \frac{4\mu^2 J^2}{R^2}} \right), \quad J(\mu) = J$$

 modular invariance, connections to random metric, Nambu-Goto action, JT gravity, string theory, CDD factors...[Review: Jiang] A simple model of $T\bar{T}$ deformation

Free scalar CFT: $\mathscr{L}_0 = \partial \phi \bar{\partial} \phi$

stress tensor $T \propto \partial \phi \partial \phi$, $\overline{T} \propto \overline{\partial} \phi \overline{\partial} \phi$

Infinitesimal $T\bar{T}$ deformation: $\delta \mathscr{L} = \mu T\bar{T}$

This deformation can be integrated and the full deformed Lagrangian is given by

$$\mathscr{L}_{\mu} = \frac{1}{2\mu} \left(\sqrt{4\mu \partial \phi \bar{\partial} \phi + 1} - 1 \right) = -\frac{1}{2\mu} + \mathscr{L}_{NG}$$

Modular invariance and density of states

 $T\bar{T}$ deformed CFTs are shown to be modular invariant [Datta-Jiang]

$$Z\left(\frac{a\tau+b}{c\tau+d}, \frac{a\bar{\tau}+b}{c\bar{\tau}+d}; \frac{\hat{\mu}}{|c\tau+d|^2}\right) = Z(\tau, \bar{\tau}; \hat{\mu}), \quad \hat{\mu} = \mu/R^2$$

Assuming large *c* and sparceness condition, the entropy in some parameter regime can be written as [Apolo-WS-Yu, WIP]

$$S = 2\pi \left[\sqrt{\frac{c}{6}} E_L(\mu) \left[1 + 2\mu E_R(\mu)\right] + \sqrt{\frac{c}{6}} E_R(\mu) \left[1 + 2\mu E_L(\mu)\right]\right], \quad E_{L/R} = \frac{1}{2R} (E \pm J)$$

Alternative argument of the entropy formula: no level crossing in the spectrum

$$S_{T\bar{T}}(E_L(\mu), E_R(\mu)) = S_{Cardy}(E_L, E_R), \quad E_{L/R} = \frac{1}{2R}(E \pm J)$$

$T\bar{T}$ with $\mu < 0$

The spectrum on a cylinder with $(x, \bar{x}) \sim (x + 2\pi R, \bar{x} + 2\pi R)$

$$E(\mu) = -\frac{R}{2\mu} \left(1 - \sqrt{1 + \frac{4\mu E}{R} + \frac{4\mu^2 J^2}{R^2}} \right), \quad J(\mu) = J, \qquad \mu < 0$$

- real energy for the ground state
- complex spectrum at very high energy
- high energy (but not too high) $S_{T\bar{T}}(E_L(\mu), E_R(\mu)) = S_{Cardy}(E_L, E_R), \quad E_{L/R} = \frac{1}{2R}(E \pm J)$

$$S = 2\pi \left[\sqrt{\frac{c}{6}} E_L(\mu) \left[1 + 2\mu E_R(\mu) \right] + \sqrt{\frac{c}{6}} E_R(\mu) \left[1 + 2\mu E_L(\mu) \right] \right]$$

c is the central charge before the deformation.

$T\bar{T}$ with $\mu > 0$

The spectrum on a cylinder with $(x, \bar{x}) \sim (x + 2\pi R, \bar{x} + 2\pi R)$

$$E(\mu) = -\frac{R}{2\mu} \left(1 - \sqrt{1 + \frac{4\mu E}{R} + \frac{4\mu^2 J^2}{R^2}} \right), \quad J(\mu) = J, \qquad \mu > 0$$

6k: central charge of the CFT

• ground state
$$E^{vac}(\mu) = -\frac{1}{2\mu}(1 - \sqrt{1 - \frac{c\mu}{3R^2}})$$
, complex if $\lambda \equiv \frac{c\mu}{6R^2} > \frac{1}{2}$
critical value: $\lambda_c = 1/2$

high energy states always have real energies

• entropy
$$S = 2\pi \left[\sqrt{\frac{c}{6}} E_L(\mu) \left[1 + \frac{2\mu}{R} E_R(\mu) \right] + \sqrt{\frac{c}{6}} E_R(\mu) \left[1 + \frac{2\mu}{R} E_L(\mu) \right] \right]$$

• Hagedorn growth at very high energy $E(\mu) \gg \frac{1}{\mu}$, $S_{T\bar{T}} \sim 2\pi \sqrt{\frac{c\mu}{3}} E(\mu)$

• temperatures $T_{L/R} \equiv (\partial S_{T\bar{T}}/\partial E_{L/R})^{-1}$, have an upper bound $T_L T_R \leq \frac{3}{4\pi^2 c\mu}$ [Apolo-Detournay-WS] A single trace version of $T\bar{T}$ deformation

A single trace version of $T\bar{T}$ deformation can be defined for as a symmetric product $(\mathcal{M}_{\mu})^{p}/S_{p}$, where the seed theory is a (double trace) deformed CFT₂.

• The spectrum in the twisted sector is given by $E_L^{(n)}(0) = E_L^{(n)}(\mu) + \frac{2\mu}{nR} R E_L^{(n)}(\mu) E_R^{(n)}(\mu)$

[Apolo-WS-Yu, WIP]

The entropy is

$$S^{single\ trace}\left(E_L, E_R\right) = 2\pi \left[\sqrt{\frac{c}{6}RE_L(\mu)\left[1 + \frac{2\mu}{Rp}E_R(\mu)\right]} + \sqrt{\frac{c}{6}RE_R(\mu)\left[1 + \frac{2\mu}{Rp}E_L(\mu)\right]}\right]$$

- The $T\bar{T}$ deformation
- Holographic dualities: the double trace version
- Holographic dualities: the single trace version
- Other solvable irrelevant deformations

The holographic dualities for $T\bar{T}$ with $\mu < 0$

cutoff AdS₃ in Einstein gravity [McGough-Mezei-Verlinde, Kraus-Liu-Marolf]

Bananos metrics

$$ds^{2} = \ell^{2} \left\{ \frac{d\rho^{2}}{4\rho^{2}} + \frac{(du + \rho \overline{\mathscr{D}}(v)dv)(dv + \rho \mathscr{D}(u)du)}{\rho} \right\}$$

$$\varphi \sim \varphi + 2\pi, \ u = t + \varphi, v = \varphi - t,$$
• Einsstein gravity with Dirichlet boundary conditions
at the surface $g_{\varphi\varphi}(\rho, u, v) \equiv \ell^{2}r_{c}^{2} = -\frac{3}{c\mu},$

$$ds^{2} = \ell^{2} \left\{ r_{c}^{2}(-dt^{2} + d\varphi^{2}) + \mathcal{O}(r - r_{c}) \right\}$$

$$\overline{\rho > \rho_{c} > 0}$$
The asymptotic boundary at $\rho = 0$

- The $\, T\bar{T}\, {\rm deformed}\; {\rm CFT}$ on the cylinder $ds_c^2 = -\, dt^{'2} + d\varphi^{'2}$

cutoff AdS₃ in Einstein gravity [*McGough-Mezei-Verlinde, Kraus-Liu-Marolf*]

evidence:

• quasi local energy of BTZ = gravitational Noether charge of the time translation generator in the locally static frame = $Q(\partial_{t'})$

 \Leftrightarrow deformed energy of $T\bar{T}$

cutoff AdS₃ in Einstein gravity [*McGough-Mezei-Verlinde, Kraus-Liu-Marolf*]

• quasi local energy of BTZ \Leftrightarrow deformed energy of $T\bar{T}$

 holographic entanglement entropy

[Donnelly-Shyam, Chen-Chen-Hao, Lewkowycz-Silverstein-Torroba]

Holographic dualities for $T\overline{T}$ with $\mu > 0$?

• Instead of cut-off, can we have a glue-on picture?

$$ds^{2} = \ell^{2} \left\{ \frac{d\rho^{2}}{4\rho^{2}} + \frac{(du + \rho \overline{\mathscr{D}}(v)dv)(dv + \rho \mathscr{L}(u)du)}{\rho} \right\}$$

$$\rho > \rho_{c}(\mu, u, v)$$

$$\circ \text{ quasi local energy of BTZ} \\\leftrightarrow \text{deformed energy of } T\overline{T}$$

$$\circ \text{ holographic entanglement} \\ \text{entropy} \\ [Apolo-Hao-Lai-WS]$$

Holographic duality for (double-trace) $T\bar{T}$

- The $T\bar{T}$ deformation
- Holographic dualities: the double trace version
- Holographic dualities: the single trace version
- Other solvable irrelevani The holographic dual is no longer asymptotically locally AdS₃

Holographic dualities for $T\overline{T}$: the single trace version

starting from very specific example of AdS₃/CFT₂ in string theory

Holographic dualities for $T\overline{T}$: the single trace version

starting from very specific example of AdS₃/CFT₂ in string theory

$\mathrm{TsT} \leftrightarrow T\bar{T}/J\bar{T}(T\bar{J})/J\bar{J}$

A conjecture

[Apolo-Detournay-WS]

Starting from IIB string theory on locally $AdS_3 \times \mathcal{N}$ with NSNS background flux,

$$\mathrm{TsT}_{(X^m, X^{\bar{m}}; \hat{\mu})} \Longleftrightarrow \frac{\partial S_{\mathcal{M}_{\mu}}}{\partial \mu} = -4 \int J_{(m)} \wedge J_{(\bar{m})}$$

LHS: T-duality along X^m , then a shift $X^{\bar{n}} = X^{\bar{n}} - \hat{\mu} X^m$, and finally T-duality along X^m .

RHS: deformed symmetric product theory

Examples:

TsT with two U(1)s both in AdS_3 / one in AdS_3 and the other in \mathcal{N} / both in \mathcal{N} [Apolo-Detournay-WS] [Chakraborty-Giveon-Kutasov; Apolo-WS] $\mathbf{\hat{V}}$ single trace $T\overline{T} / J\overline{T}(T\overline{J}) / J\overline{J}$ deformations [Giveon-Itzhaki-Kutasov, Giribet] [Guica]

$\mathrm{TsT} \leftrightarrow T\bar{T}/J\bar{T}(T\bar{J})/J\bar{J}$

Side remark:

In IIB string theory on $AdS_5 \times S^5$ with RR background flux, [Lunin-Maldacena]

TsT with two U(1)s both in AdS_5 / one in AdS_5 and the other in S^5 / both in S^5 non-commutative / dipole / β deformations

Our conjecture [Apolo, Detournay, WS] Starting from IIB string theory on locally $AdS_3 \times \mathcal{N}$ with NSNS background flux, TsT with two U(1)s both in AdS_3 / one in AdS_3 and the other in \mathcal{N} / both in \mathcal{N} single trace $T\overline{T} / J\overline{T}(T\overline{J}) / J\overline{J}$ deformations

A conjecture

[Apolo-Detournay-WS]

Starting from IIB string theory on locally $AdS_3 \times \mathcal{N}$ with NSNS background flux,

$$\mathrm{TsT}_{(X^{m},X^{\bar{m}};\hat{\mu})} \Longleftrightarrow \frac{\partial S_{\mathcal{M}_{\mu}}}{\partial \mu} = -4 \int J_{(m)} \wedge J_{(\bar{m})}$$

Evidence:

- action and symmetries
- string spectrum
- black hole thermodynamics

A useful rewriting of $T\bar{T}$ deformation

$$\frac{\partial S_{\mu}}{\partial \mu} = \int dx^2 \left(T_{xx} T_{\bar{x}\bar{x}} - T_{x\bar{x}} T_{\bar{x}x} \right)$$

 $x = \phi + t, \ \bar{x} = \phi - t$ $T_{\mu\nu}$: stress tensor of the deformed theory at μ

$$\frac{\partial S_{\mu}}{\partial \mu} = -4 \int J_{(x)} \wedge J_{(\bar{x})}$$

 $J_{(x)}$: Noether current that generates translation in x $J_{(\bar{x})}$: Noether current that generates translation in \bar{x}

$$T\bar{T}: \ J_{(x)} = T_{xx}dx + T_{x\bar{x}}d\bar{x}, \ J_{(\bar{x})} = T_{\bar{x}x}dx + T_{\bar{x}\bar{x}}d\bar{x}.$$

Solvable irrelevant deformations

• 1-parameter deformations:

$$\frac{\partial S_{\mu}}{\partial \mu} = -4 \int J_{(m)} \wedge J_{(\bar{m})}$$

 $J_{(m)}/J_{(ar{m})}$: Noether currents chiral/anti-chiral at conformal point

$$T\bar{T}: \ J_{(x)} = T_{xx}dx + T_{x\bar{x}}d\bar{x}, \quad J_{(\bar{x})} = T_{\bar{x}x}dx + T_{\bar{x}\bar{x}}d\bar{x}.$$
$$J\bar{T}: \ J_{(n)} = J_xdx + J_{\bar{x}}d\bar{x}, \quad J_{(\bar{x})} = T_{\bar{x}x}dx + T_{\bar{x}\bar{x}}d\bar{x}.$$
$$T\bar{J}: \ J_{(x)} = T_{xx}dx + T_{x\bar{x}}d\bar{x}, \quad J_{(\bar{n})} = J_xdx + J_{\bar{x}}d\bar{x}.$$

• 3-parameter deformations:

$$T\bar{T} + J\bar{T} + T\bar{J}: \frac{\partial S_{\mu_0, \mu_+, \mu_-}}{\partial \mu_0} = -4 \int J_{(x)} \wedge J_{(\bar{x})}, \frac{\partial S_{\mu_0, \mu_+, \mu_-}}{\partial \mu_+} = -4 \int J_{(n)} \wedge J_{(\bar{x})}$$
$$\frac{\partial S_{\mu_0, \mu_+, \mu_-}}{\partial \mu_-} = -4 \int J_{(x)} \wedge J_{(\bar{n})}$$

Solvable irrelevant deformations

• 1-parameter deformations:

$$\frac{\partial S_{\mu}}{\partial \mu} = -4 \int J_{(m)} \wedge J_{(\bar{m})}$$

 $J_{(m)}/J_{(ar{m})}$: Noether currents chiral/anti-chiral at conformal point

$$T\bar{T}: \ J_{(x)} = T_{xx}dx + T_{x\bar{x}}d\bar{x}, \quad J_{(\bar{x})} = T_{\bar{x}x}dx + T_{\bar{x}\bar{x}}d\bar{x}.$$
$$J\bar{T}: \ J_{(n)} = J_xdx + J_{\bar{x}}d\bar{x}, \quad J_{(\bar{x})} = T_{\bar{x}x}dx + T_{\bar{x}\bar{x}}d\bar{x}.$$
$$T\bar{J}: \ J_{(x)} = T_{xx}dx + T_{x\bar{x}}d\bar{x}, \quad J_{(\bar{n})} = J_xdx + J_{\bar{x}}d\bar{x}.$$

• 3-parameter deformations:

$$T\bar{T} + J\bar{T} + T\bar{J}: \frac{\partial S_{\mu_0,\mu_+,\mu_-}}{\partial \mu_0} = -4\int J_{(x)} \wedge J_{(\bar{x})}, \frac{\partial S_{\mu_0,\mu_+,\mu_-}}{\partial \mu_+} = -4\int J_{(n)} \wedge J_{(\bar{x})}$$
$$\frac{\partial S_{\mu_0,\mu_+,\mu_-}}{\partial \mu_-} = -4\int J_{(x)} \wedge J_{(\bar{n})}$$

TsT $\leftrightarrow T\overline{T}/J\overline{T}(T\overline{J})/J\overline{J}$: the action

The string worldsheet action $S_{WS} = -\ell_s^{-2} \int d^2 z \ M_{\mu\nu} \partial X^{\mu} \ \overline{\partial} X^{\nu},$ $G_{\mu\nu}$: Target space metric $M_{\mu\nu} \equiv G_{\mu\nu} + B_{\mu\nu}$ $B_{\mu\nu}$: NS-NS potential

TsT along $X^m, X^{\bar{m}}$: $M = \tilde{M} \left(I + 2\hat{\mu}\Gamma\tilde{M} \right)^{-1}, \Gamma_{\mu\nu} = \delta^m_{\mu}\delta^{\overline{m}}_{\nu} - \delta^{\overline{m}}_{\mu}\delta^m_{\nu}$ $X^m, X^{\bar{m}}$ are isometries

satisfies the differential equation: $\frac{\partial M}{\partial \hat{\mu}} = -2\ell_s^{-2}M\Gamma M$

TsT on string worldsheet can be formulated as :

$$\frac{\partial S_{WS}}{\partial \hat{\mu}} = -4 \int \boldsymbol{j}_{(m)} \wedge \boldsymbol{j}_{(\overline{n})}$$

 $\boldsymbol{j}_{(m)}$, $\boldsymbol{j}_{(\overline{n})}$ are worldsheet Noether 1-forms associated to ∂_{X^m} , and $\partial_{X^{\overline{m}}}$ Noether charges $p_{(m)} \propto \oint \boldsymbol{j}_m$ marginal deformation on the worldsheet

irrelavent deformation on the dual theory

 $T\bar{T}$ on the dual field theory $(\mathcal{M}_{\mu})^p / S_p$: $\frac{\partial S_{\mathcal{M}_{\mu}}}{\partial \mu} = -4 \int J_{(m)} \wedge J_{(\overline{m})}$

 $J_{(m)}$, $J_{(\overline{m})}$ are the **boundary spacetime** Noether 1-forms associated to ∂_{X^m} , and $\partial_{X^{\overline{m}}}$ Noether charges $E_{(m)} \propto \sum_{i=1}^p \oint J_m^i$ Evidence for TsT $\leftrightarrow T\overline{T}/J\overline{T}(T\overline{J})/J\overline{J}$: the spectrum

After the TsT, string spectrum on a cylinder can be obtained by two observations: [Apolo, WS; Apolo, Stephane, WS;]

1. String spectrum of AdS₃ on a cylinder with "winding" $X^{1}(\sigma + 2\pi) = X^{1}(\sigma + 2\pi) + 2\pi\gamma^{1}, X^{\overline{2}}(\sigma + 2\pi) = X^{\overline{2}}(\sigma + 2\pi) + 2\pi\gamma^{\overline{2}}$ can be obtained from zero winding by "spectral flow" with parameter $\gamma^{1}/\gamma^{\overline{2}}$ in the left/right sector *[Maldacena,Ooguri]*

2. TsT on the worldsheet \Leftrightarrow field redefinition: [Alday]

string solutions on new background with periodic b.c.

 \iff strings on the old background with twisted boundary conditions depending on the momentum $p_{(1)}, p_{(\bar{2})}$.

assuming $j_{(1)}/j_{(\bar{2})}$ to be chiral/antichiral up to total derivative terms (satisfied for the WZW model)

↔ momentum dependent "spectral flow" parameters

Evidence for TsT $\leftrightarrow T\overline{T}/J\overline{T}(T\overline{J})/J\overline{J}$: the spectrum

• The Virasoro constraints on AdS₃ background with winding w $X^{1}(\sigma + 2\pi) = X^{1}(\sigma + 2\pi) + 2\pi w, X^{\overline{2}}(\sigma + 2\pi) = X^{\overline{2}}(\sigma + 2\pi) + 2\pi w$ is related to those of on AdS₃ background without winding

$$\hat{L}_0 = \quad \tilde{L}_0 \qquad \qquad + w R p$$

Relation?

• The Virasoro constraints on the TsT background with winding is related to those of on AdS₃ background by spectral flow transformations

$$\hat{L}_0 = \tilde{L}_0 + wRp(\hat{\mu}) + 2\hat{\mu}p(\hat{\mu})\bar{p}(\hat{\mu})$$

$TsT \leftrightarrow T\bar{T}/J\bar{T}(T\bar{J})/J\bar{J}$

supergravity analysis: TsT transformation

A two parameter family of classical solutions in IIB SUGRA with NSNS fluxes

$$d\tilde{s}_{3}^{2} = \ell^{2} \left\{ \frac{dr^{2}}{4\left(r^{2} - 4T_{u}^{2}T_{v}^{2}\right)} + rdudv + T_{u}^{2}du^{2} + T_{v}^{2}dv^{2} \right\}, \quad (u, v) \sim (u + 2\pi, v + 2\pi)$$

$$e^{2\tilde{\Phi}} = \frac{k}{p} \longrightarrow \text{ # of NS5 branes, magnetic charge} \quad \cdot T_{u}^{2} \ge 0, T_{v}^{2} \ge 0 : \text{BTZ black holes}$$

$$\cdot T_{u} = T_{v} = 0 : \text{massless BTZ}$$

$$\cdot T_{u}^{2} < 0, T_{v}^{2} < 0: \text{ conical defect}$$

$$\cdot T_{u}^{2} = T_{v}^{2} = -\frac{1}{4}: \text{ global AdS}_{3}$$

stationary solutions dual to the single trace $T\bar{T}$ deformed CFT₂ can be obtained from the solution via the following TsT transformations:

T-dualize along u, shifting $v \to v - \frac{2\lambda}{k}v$, and T-dualizing along u once more

$$\frac{ds_3^2}{\ell^2} = \frac{dr^2}{4\left(r^2 - 4T_u^2 T_v^2\right)} + \frac{rdudv + T_u^2 du^2 + T_v^2 dv^2}{1 + 2\lambda r + 4\lambda^2 T_u^2 T_v^2}$$
$$e^{2\Phi} = \frac{k}{p} \left(\frac{1 - 4\lambda^2 T_u^2 T_v^2}{1 + 2\lambda r + 4\lambda^2 T_u^2 T_v^2}\right) e^{-2\phi_0} \qquad (u, v) \sim (u + 2\pi, v + 2\pi)$$

In string frame, the TsT transformed solution is

$$\begin{aligned} \frac{ds_3^2}{\ell^2} &= \frac{dr^2}{4\left(r^2 - 4T_u^2 T_v^2\right)} + \frac{rdudv + T_u^2 du^2 + T_v^2 dv^2}{1 + 2\lambda r + 4\lambda^2 T_u^2 T_v^2} \qquad (u, v) \sim (u + 2\pi, v + 2\pi) \\ e^{2\Phi} &= \frac{k}{p} \left(\frac{1 - 4\lambda^2 T_u^2 T_v^2}{1 + 2\lambda r + 4\lambda^2 T_u^2 T_v^2}\right) e^{-2\phi_0} \end{aligned}$$

- λ is the deformation parameter
- T_{μ}, T_{ν} parameterize the phase space of the theory
- The resulting geometry interpolates

IR: locally AdS

$$\mathsf{UV}(r \to \infty): \, ds^2 \propto dy^2 + dudv, \, \partial_y \Phi \propto \lambda, y \propto \ln r$$

This is asymptotically flat spacetime in the string frame! • $T_u = T_v = 0, \phi_0 = 0$, the LST background of [Giveon, Itzhaki, Kutasov] • $T_u = T_v = 0, \phi_0 = 0, \lambda = 1/2$, black string [Horne-Horowitz] The holographic dictionary before deformation

- coordinates $u \leftrightarrow x$, $v \leftrightarrow \overline{x}$;
- gravitational Noether charge of $\partial_u \leftrightarrow$ Noether charge of ∂_x

$$\mathcal{Q}_{\partial_u} = \frac{1}{2}(M+J) = \frac{c}{6}T_u^2 \leftrightarrow E_L$$

• global AdS₃, at $T_u = T_v = \frac{i}{2} \leftrightarrow NS$ vaccum on the cylinder $E_L = E_R = -\frac{c}{24}$ • zero mass BTZ($T_u = T_v = 0$) \leftrightarrow Ramond vacuum

- Finite temperature $\ell T_L = \frac{T_u}{\pi}, \quad \ell T_R = \frac{T_v}{\pi}$
- The Bekenstein-Hawking entropy \leftrightarrow Cardy formula in the dual CFT₂

The ground state can be obtained by assuming $T_u^2 = T_v^2 \equiv -\rho_0^2$, $\rho_0 > 0$ and requiring smoothness at the origin. After a change of coordinate, the metric is

$$ds_{3}^{2} = \ell^{2} \left\{ \frac{d\rho^{2}}{\rho^{2} + 1} + \frac{\rho^{2} d\varphi^{2} - (\rho^{2} + 1) dt^{2}}{1 + 2\lambda\rho^{2}} \right\} \qquad \rho \in [0,\infty), \quad \varphi \sim \varphi + 2\pi$$

$$\rho_{0} = \frac{1}{2\lambda} (1 - \sqrt{1 - 2\lambda})$$

$$B = -\frac{\ell^{2} (\rho^{2} + \rho_{o})}{2(1 + 2\lambda\rho^{2})} du \wedge dv, \quad e^{2\Phi} = \frac{k}{p} \frac{(1 - 2\lambda\rho_{o}^{2})}{2\rho_{o} (1 + 2\lambda\rho^{2})} e^{-2\phi_{0}}$$

- $\begin{array}{l} \lambda > \frac{1}{2} \text{ complex solution;} \\ \lambda_c = \frac{1}{2}, \ e^{2\Phi} \rightarrow 0 \text{ unless } \phi_0 \text{ is fine tuned, infinitely weak string coupling everywhere} \\ 0 < \lambda < \frac{1}{2}, \text{ smooth and real solution} \\ \text{IR: } \rho \rightarrow 0, \ \text{global AdS}_3 \text{ , smooth, no horizons} \\ \text{UV: } R^{1,1} \times S^1 \text{, locally flat with linear dilaton, infinitely weak coupled strings} \end{array}$
- $\lambda < 0$, CTC and curvature singularity at $\rho_c^2 = 1/2 |\lambda|$

The ground state can be obtained by assuming $T_u^2 = T_v^2 \equiv -\rho_0^2$, $\rho_0 > 0$ and requiring smoothness at the origin. After a change of coordinate, the metric is

$$ds_{3}^{2} = \ell^{2} \left\{ \frac{d\rho^{2}}{\rho^{2}+1} + \frac{\rho^{2}d\varphi^{2} - (\rho^{2}+1)dt^{2}}{1+2\lambda\rho^{2}} \right\} \qquad \rho \in [0,\infty), \quad \varphi \sim \varphi + 2\pi$$

$$\rho_{0} = \frac{1}{2\lambda}(1-\sqrt{1-2\lambda})$$

$$B = -\frac{\ell^{2}\left(\rho^{2}+\rho_{o}\right)}{2(1+2\lambda\rho^{2})}du \wedge dv, \quad e^{2\Phi} = \frac{k}{p}\frac{\left(1-2\lambda\rho_{o}^{2}\right)}{2\rho_{o}\left(1+2\lambda\rho^{2}\right)}e^{-2\phi_{0}}$$

$$TsT/T\bar{T} \text{ matching: } \ell \leftrightarrow R = \lambda\ell^{2} \leftrightarrow \mu$$

$$\begin{split} \lambda &> \frac{1}{2} \text{ complex solution;} \\ \lambda_c &= \frac{1}{2}, \ e^{2\Phi} \to 0 \text{ unless } \phi_0 \text{ is fine tuned, infinitely weak string coupling everywhere} \\ 0 &< \lambda &< \frac{1}{2}, \text{ smooth and real solution} \\ \text{IR: } \rho &\to 0, \text{ global AdS}_3 \text{ , smooth, no horizons} \end{split}$$

UV: $R^{1,1} \times S^{1}$, locally flat with linear dilaton, infinitely weak coupled strings

•
$$\lambda < 0$$
, CTC and curvature singularity at $\rho_c^2 = 1/2 |\lambda|$

supergravity analysis: $TsT/T\overline{T}$ matching

Black holes $T_u, T_v > 0$, asymptotic to $R^{1,1} \times S^1$ at large radius. Horizon at $r_+ = 2T_uT_v$, independent of λ Electric and magnetic charges $Q_e = pe^{2\phi_0}$, $Q_m = k$

TsT/ $T\bar{T}$ dictionary for $\phi_0 = 0$, i.e. fixed Q_e, Q_m

- Noether charges $\mathcal{Q}_{\partial_u} \leftrightarrow E_L$
- smooth Euclidean geometry at the horizon \leftrightarrow torus parameters $(u, v) \sim \left(u + i/\ell T_L, v - i/\ell T_R\right) \quad \ell T_L = \frac{1}{\pi} \frac{T_u}{1 + 2\lambda T_u T_v}, \quad \ell T_R = \frac{1}{\pi} \frac{T_v}{1 + 2\lambda T_u T_v}$
- Bekenstein Hawking entropy \Leftrightarrow entropy of single trace $T\bar{T}$ $S_{TsT} = 2\pi \{ \sqrt{\mathcal{Q}_{\partial_u} \left(\mathcal{Q}_e \mathcal{Q}_m + 2\lambda \mathcal{Q}_{-\partial_v} \right)} + \sqrt{\mathcal{Q}_{-\partial_u} \left(\mathcal{Q}_e \mathcal{Q}_m + 2\lambda \mathcal{Q}_{\partial_u} \right)} \} = S_{T\bar{T}}$ • $T_u = T_v = \frac{i}{2\lambda} (1 - \sqrt{1 - 2\lambda}) \Leftrightarrow$ ground state, NS vacuum • $T_u = T_v = 0 \Leftrightarrow$ Ramond vacuum • upper bound for the temperatures $T_L T_R \leq \frac{1}{8\pi \ell^2 \lambda}$ by requiring real dilaton \Leftrightarrow upper bound for the temperatures in $T\bar{T}$ deformation

How about $\lambda < 0$?

• CTC & conical singularity at large radius $r_c = \frac{1}{2\lambda} + 2\lambda T_u^2 T_v^2$

• real dilaton \leftrightarrow real spectrum $T_u T_v \leq \frac{1}{2|\lambda|} \leftrightarrow E(\mu) \leq \frac{pR^2}{2|\mu|}$

"=" when the horizon coincides with the CTC & conical singularity

• Region of positive cosmological constant

Summary

A class of toy models for non-AdS holography

- The $T\bar{T}$ deformation
- Holographic dualities: the double trace version
- Holographic dualities: the single trace version
- Other solvable irrelevant deformations

Another example

An explicit and tractable toy model for Kerr/CFT in string theory

[Azeyanagi-Hofman-WS-Strominger 13' Apolo-WS 18', 19', Chakraborty-Giveon-Kutasov 18']

More general examples

[Chakraborty-Giveon-Kutasov 19', Apolo-WS, 21']

Holographic dualities for irrelevant deformations

• 'double trace'

• Universal

Holography for ``double trace" deformations

local geometry unchanged

- changes the boundary condition
- d = 2, $T\bar{T}(with \ \mu < 0) \leftrightarrow \text{cut-off AdS}_3$ in Einstein gravity [McGough-Mezei-Verlinde]
- d = 2, $T\bar{T}(with \ \mu > 0) \leftrightarrow$ glue-on AdS₃ in Einstein gravity [Apolo-Hao-Lai-WS, WIP]
- d = 2, $T\bar{T} + \Lambda_2 \leftrightarrow$ patch of dS [Gorbenko-Silverstein-Torroba]
- d > 2, $T\bar{T} \leftrightarrow \text{cutoff AdS}_{d+1}$ in Einstein gravity [Hartman-Kruthoff-Shaghoulian-Tajdini, Taylor]
- $d = 1, T\overline{T} \leftrightarrow$ cutoff JT gravity [Gross-Kruthoff-Rolph-Shaghoulian, Iliesiu-Kruthoff-Turiaci-Verlinde, Stanford-Yang]
- d = 2, $J\bar{T} \leftrightarrow AdS_3$ in Einstein gravity+Chern-Simons gauge theory [Bzowski-Guica]

Holography for ``single trace" deformations

'single trace'

• embedded in string theory

asymptotic geometry changed

- d = 2, $T\bar{T} \leftrightarrow$ black strings in string theory [Giveon-Itzhaki-Kutasov, Apolo-Detournay-WS]
- d = 2, $J\bar{T} \leftrightarrow WAdS_3$ in string theory [Chakraborty-Giveon-Kutasov; Apolo-WS]
- d = 2, $T\overline{T} + J\overline{T} + T\overline{J} \leftrightarrow$ three TsT transformations in string theory [Chakraborty-Giveon-Kutasov; Apolo-WS]

Thank you!